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ABSTRACT Historically, Bifidobacterium species were reported as abundant in the
breastfed infant gut. However, recent studies in resource-rich countries show an in-
creased abundance of taxa regarded as signatures of dysbiosis. It is unclear whether
these differences are the product of genetics, geographic factors, or interventions
such as formula feeding, antibiotics, and caesarean section. Fecal pH is strongly as-
sociated with Bifidobacterium abundance; thus, pH could be an indicator of its his-
torical abundance. A review of 14 clinical studies published between 1926 and 2017,
representing more than 312 healthy breastfed infants, demonstrated a change in fe-
cal pH from 5.0 to 6.5 (adjusted r2 � 0.61). This trend of increasing infant fecal pH
over the past century is consistent with current reported discrepancies in Bifidobac-
terium species abundance in the gut microbiome in resource-rich countries com-
pared to that in historical reports. Our analysis showed that increased fecal pH and
abundance of members of the families Enterobacteriaceae, Clostridiaceae, Peptostrep-
tococcaceae, and Veillonellaceae are associated, indicating that loss of highly special-
ized Bifidobacterium species may result in dysbiosis, the implications of which are
not yet fully elucidated. Critical assessment of interventions that restore this ecosys-
tem, measured by key parameters such as ecosystem productivity, gut function, and
long-term health, are necessary to understand the magnitude of this change in hu-
man biology over the past century.
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IMPLICATIONS

There is clear evidence that the infant gut microbiome has important long-term
health implications, but changing the gut microbiome is challenging. We recently

observed changes in fecal pH resulting from Bifidobacterium infantis EVC001 coloniza-
tion owing to this bacterium’s selective and acidic fermentation of human milk oligo-
saccharides (HMOs), which was associated with a reduction in taxa that are signatures
of dysbiosis. Although remodeling of the gut microbiome in breastfed infants fed
B. infantis EVC001 improved gut function and ecosystem productivity, questions re-
main about whether differences in Bifidobacterium abundance and species between
resource-rich and resource-poor countries are due to host genetics, geography, medical
interventions, and/or demographics. Here, we show evidence for an increase in infant
fecal pH over the past century, corresponding to an observed reduction of Bifidobac-
terium, the keystone infant gut symbiont. This may have implications for epidemic
human immunological dysfunctions as perturbations in microbiota composition can
lead to chronic inflammation and immune-mediated diseases.
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EARLY DESCRIPTIONS OF THE INFANT MICROBIOME

In 1913, Logan described the breastfed infant gut microbiome as being an “almost
pure culture” of a Gram-positive, acidiphilic “Bacillus bifidus” (Bifidobacterium) (1). This
early microscopic characterization of diet-dependent infant microbiomes is in stark
contrast to modern reports from resource-rich countries of unstable and highly diverse
microbiomes (2). Recent comparisons of the infant gut microbiome from genetically
similar but demographically diverse backgrounds indicated that Bifidobacterium was
more abundant among infants from resource-poor locations (3), consistent with infants
in sub-Saharan Africa and South Asia (4, 5). These differences are also notable at the
species level, in that the Bifidobacterium in the feces of infants in Gambia and Bangla-
desh were shown to be predominantly Bifidobacterium longum subsp. infantis (B. in-
fantis), whereas the Bifidobacterium species in stool samples from infants in the United
States and Europe consisted predominantly of B. breve and B. longum subsp. longum
(B. longum) (2, 6, 7). Substantial differences in Bifidobacterium composition and abun-
dance among populations have led to questions as to whether medical interventions
(e.g., caesarean section, antibiotic use) and formula feeding, or geographic and genetic
differences alone, results in these differences (2, 6).

FECAL pH IN BREASTFED INFANTS IS DRIVEN BY BIFIDOBACTERIUM
ABUNDANCE

Recently, we found that breastfed infants fed B. infantis EVC001 developed a stable
population of this strain and experienced substantial changes in intestinal biochemis-
try. Notably, fermentation of HMOs resulted in the increased production of lactate and
acetate, which was markedly lower in infants who lacked populations of Bifidobacterium
or were colonized by other Bifidobacterium species. This was concurrent with signifi-
cantly higher fecal excretion of HMOs than that of infants fed B. infantis (7). Using data
published by Frese et al. (7), we compared fecal pH measurements with bacterial taxa
by using a Spearman correlation. Importantly, only one family was significantly asso-
ciated with reduced fecal pH, i.e., Bifidobacteriaceae (P � 0.0004), indicating that while
other bacteria can consume HMOs (e.g., Bacteroidaceae), only members of the family
Bifidobacteriaceae convert them to acidic end products with a meaningful effect on
fecal pH (Fig. 1). This corroborates previous findings linking infant fecal pH to Bifido-
bacteriaceae abundance (7, 8). This is a critical connection because although other
bacteria (e.g., Lactobacillus, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae) may
produce organic acids during fermentation (e.g., lactate, acetate, butyrate, propionate),
they were not significantly associated with the acidic fecal pH in breastfed infants.
Infants colonized by B. infantis EVC001 had negligible levels of HMOs in their feces and
an average fecal pH of 5.15, whereas infants lacking B. infantis had 10-fold higher levels
of HMOs in their feces and a fecal pH of 5.97 (7). Further, quantitative PCR confirmed
the association of low fecal pH with an increased abundance of Bifidobacterium, in
agreement with another study (8).

INFANT FECAL pH CHANGES OVER GENERATIONS

Early 1900s reports suggest a rapid reduction in the fecal pH of breastfed infants
during the first week after birth (9). Gyorgy and others identified a “bifidus factor,”
whose abundance contributed to this reduction in fecal pH and an increase in Bifido-
bacterium in infant feces (10). This “bifidus factor” (now collectively described as HMOs),
is selectively consumed by infant-associated Bifidobacterium; therefore, pH may be a
reliable proxy of the breastfed infant gut microbiome. Infant fecal pH reported over the
past century is independent of microbiological methodologies (e.g., microscopic ex-
amination versus 16S rRNA gene sequencing); thus, we speculated that historical
reports of fecal pH could be used as an indirect measure of Bifidobacterium abundance.

Fourteen peer-reviewed studies published between 1926 and 2017 and reporting
312 measurements from healthy, breastfed infants were found and included. A least-
squares linear regression model revealed a strong positive trend with a high association
between the publication year and fecal pH (slope � 0.014, adjusted r2 � 0.61; Fig. 2).
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These data suggest that the mean fecal pH of breastfed infants has increased from
about 5.0 in 1926 to 6.5 in recent years (Table 1). Given our previous finding linking
fecal pH to Bifidobacterium abundance (7) and reported differences in Bifidobacterium
abundance across populations today (2, 3, 6, 7), this longitudinal change is consistent
with a generational loss of Bifidobacterium in developed countries, most notably among
infants born after 1980.

FACTORS LEADING TO THIS CHANGE IN INFANT FECAL pH

The absence of Bifidobacterium as a keystone symbiont in infants may explain the
increase in fecal pH and can be linked to unintended historical and generational
consequences of certain interventions that have otherwise significantly improved

FIG 1 Correlation of bacterial families identified via 16S rRNA marker gene sequencing with fecal pH.
Corresponding P values were considered statistically significant when they were �0.05 with false-
discovery rate (FDR) correction. *, P � 0.05; **, P � 0.01; ***, P � 0.001.

FIG 2 Fecal pH reported in studies along with the average, standard deviation, and numbers of samples
measured (where reported) plotted by year of study publication. A linear trend (solid line) and 95%
confidence interval (dashed lines) are plotted.
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infant and maternal health. First, a rapid increase in the use of human milk replacers
(e.g., evaporated milk and infant formula), which lack the bacterial selectivity of human
milk, beginning in the 1920s may have resulted in the inability to foster high levels of
specialized infant-associated Bifidobacterium in the infant gut among nonbreastfed
infants. This may also explain why B. infantis, which is highly specialized for the
consumption of HMOs, is now exceptionally rare among infants in the United States
and Europe, whereas B. longum and B. breve, which can access mucin glycans and plant
carbohydrates (11), remain relatively abundant. Second, increased caesarean section
delivery since the 1980s further limits the natural fecal-oral transfer of Bifidobacterium
from mother to infant associated with vaginal delivery (12). Third, antibiotic use has
become increasingly common during labor and many infant-associated species of
bifidobacteria are sensitive to antibiotics (13). For example, the use of antibiotics to
prevent the transmission of group B Streptococcus during delivery and the use of
caesarean section as the mode of delivery are both critically important interventions in
public health but can alter the acquisition of gut microbes by the infant that begins at
birth (13, 14). Together, these barriers may have played a role in the loss of Bifidobac-
terium over time and across generations, which is reflected in a higher fecal pH.

ARE THERE HEALTH IMPLICATIONS TO THIS CHANGE?

There is clear evidence that the infant gut microbiome has important long-term
health implications, and perturbations of the microbiome composition may lead to
chronic inflammation (15) and immune-mediated diseases (3, 16–18). These data
highlight an increase in infant intestinal dysbiosis (16). Thus, the loss of Bifidobacterium
and the profound change in the gut environment, as measured by fecal pH, present a
compelling explanation for the increased incidence of allergic and autoimmune dis-
eases observed in resource-rich nations. Longitudinal analyses studies comparing the
incidence of autoimmune disorders with restored Bifidobacterium populations in the
infant gut microbiome are essential to establish the role of Bifidobacterium in early
immune development in the infant gut.
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TABLE 1 Studies examining the fecal pH of healthy, breastfed infants

Study author(s) (country) Yr Fecal pH SD Sample size Reference

Eitel (Germany)a 1917 4.6–5.6 NRb NR 19
Freudenberg and Heller

(Germany)a

1921 4.8–5.6 NR NR 20

Tisdall (Canada)a 1924 4.7–5.1 NR NR 21
Norton (United States) 1926 4.88 0.22 19 9
Uldall (Denmark) 1942 5.5 0.56 17 22
Barbero (United States) 1952 5.5 NR 7 23
Pratt (United States) 1955 5.4 NR 71 24
Nagai (Japan) 1960 5.3 0.25 9 25
Bullen (United Kingdom) 1971 5.2 0.43 10 26
Bullen (United Kingdom) 1977 5.1 NR 13 27
Simhon (United Kingdom) 1982 5.9 NR 17 28
Balmer (United Kingdom) 1989 6.18 0.67 38 29
Ogawa (Argentina) 1992 5.8 0.6 7 30
Knol (Germany) 2005 5.8 NR 21 31
Mohan (Germany) 2008 6.38 0.1 32 32
Holscher (United States) 2011 6.41 0.11 33 33
Matsuki (Japan)a 2016 5.9 0.6 15 8
Frese (United States) 2017 5.97 0.57 18 7
aReport excluded for insufficient data.
bNR, not reported.
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data, materials, and analysis methods open and available upon request, where
permitted.
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