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A B S T R A C T

The infant gut microbiome is rapidly colonized by bacteria from the environment after birth, and this gut
ecosystem can facilitate expansion of potential pathogens. Human milk shapes the infant gut microbiome and
has evolved to foster the growth of specific bacteria. Breastfed infants fed the coevolved infant gut symbiont
Bifidobacterium longum subsp. infantis EVC001 had significant modifications to their gut metagenome, including a
decreased number of virulence factor genes.

Virulence factors (VFs) enable bacterial survival and infection in the
host [1] and exhibit a broad spectrum of functions that are indis-
pensable for microbes to achieve colonization, evade the host immune
system and obtain nutrients from the host [2,3]. The advancement of
molecular techniques, particularly metagenomics, has allowed ex-
tensive characterization of the VF mechanisms, thus enabling a deeper
understanding of bacterial pathogenesis [2].

Neonates are particularly susceptible to microbial infections since
the infant gut has low microbiome stability and colonization resistance
[4]. In this environment, microbes with VFs can easily establish per-
sistent reservoirs and colonize newborn infants [5]. A rising global in-
cidence of bacteria resistant to several classes of antibiotics, limits ef-
fective therapies [6,7], and infections are a leading cause of death in
infant intensive care units [8].

Recent studies have shown how commensal bacteria play a key role
in the evolution and dissemination of VFs, even if they do not directly
express virulence genes [9,10]. There are limited ways by which VFs
and the organisms that harbor them can be restricted without the use of
antibiotics. In a recent clinical trial, we demonstrated how a single-
strain probiotic containing Bifidobacterium longum subsp. infantis
EVC001 (B. infantis EVC001) fed to breastfed infants changed the gut
microbiome composition to improve its stability and function [11].

In the present study, we extended our findings from our previous
clinical trial [11] using shotgun metagenomic sequencing to examine
whether colonization by B. infantis EVC001 significantly reduces the
abundance of potential pathogens, and their VFs, in the healthy
breastfed-infant gut microbiome. Shotgun metagenome sequencing was
performed on 60 fecal samples collected from infants at day 21 post-
natal. The mothers of 29 breastfed infants were provided lactation

support, and the infants were fed B. infantis EVC001 daily (EVC001-fed)
from day 7 postnatal. Another 31 mothers received only lactation
support and their infants were not fed B. infantis EVC001 (controls). B.
infantis is a well-characterized organism for which there is extensive
evidence of evolutionary adaptation to the breastfed infant gut [12,13].
However, the infant gut microbiome in resource-rich countries has
experienced a progressive loss of B. infantis, likely due to high rates of
Cesarean section delivery, formula feeding and antibiotics usage over
the last three generations [14].

Metagenomic analysis using clade-specific marker genes to un-
ambiguously assign reads to functional genes confirmed our previous
16S rRNA-based analysis [15] (Supplementary Methods,
Supplementary Table 1). Particularly, feeding B. infantis EVC001 in-
creased Bifidobacteriaceae abundance in feces of breastfed infants,
whereas no B. infantis was detected among control samples. After two
weeks of supplementation, Bifidobacteriaceae was significantly in-
creased (p=7.18E-07), whereas Enterobacteriaceae (p= 0.0001) and
Clostridiaceae (p= 0.007) families were significantly decreased
(Fig. 1A). To profile the VF gene composition in samples, we used a
non-redundant database obtained by merging three well-known VF
gene databases (Supplementary Methods). A total of 2,832 VF genes
were identified in controls, representing nearly twice the number of VF
genes identified in EVC001-fed infant samples (Supplementary
Table 2), which contained significantly fewer VF genes (p=0.0001).
On average, EVC001-fed infant samples had an 85% lower relative
abundance of VF genes in the overall metagenome than control samples
(Fig. 1B).

Hierarchal clustering based on the overall abundance of VF gene
profiles revealed a marked separation of the individual samples based
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on supplementation status (Fig. 2A). This suggested similarities in VF
type and respective abundances in samples within the same treatment
group, with the majority of those in the EVC001-fed group clustering
with the lower VF gene abundance (Fig. 2A). Furthermore, 146 in-
dividual VF genes were lower in the EVC001 group (FDR-p < 0.05).
These genes were mapped to the corresponding KEGG orthologs and
pathways (Fig. 2B). Contextually, many of the gene functions in the
database identified in samples from EVC001-fed infants as virulence
factors are housekeeping genes that are necessary but not sufficient, or
are repurposed from their known housekeeping function, for infection
by pathogenic bacteria [16].

Conserved among the genes for many of the potentially pathogenic
organisms identified were those for glutathione reductases, arginine N-
succinyltransferases, stress response regulators (Hsp90, OmpR/EnvZ,
rpoS), Fe(III) and Zn permeases, and flagellar proteins (FliN/FliY)
(Supplementary Table 3). These gene functions are all associated with
response to stress. Host inflammation creates an environment that favor
certain taxa who thrive under differentially oxidative states [17,18],
and a picture of inflammation and dysbiosis is emerging based on this

understanding [19].
Although ideal for functional classification, VF databases are usually

built with genes identified in model organisms, thus limiting taxonomic
classification. To infer the proper taxonomic assignment of bacteria
contributing to the identified VFs, we performed individual meta-
genome assemblies of five representative samples with the most
abundant and diverse VF gene profiles (Supplemental methods). As-
sembled metagenomes were converted into local databases used to re-
trieve taxonomic information coupling previously identified clade-
specific VFs amino acids sequences. Higher levels of Bifidobacteriaceae
(i.e., B. infantis) were associated with a lower abundance of VFs,
whereas higher abundance of Enterobacteriaceae (e.g., Escherichia coli,
Klebsiella), Clostridiaceae (e.g., Clostridium), Pasteurellaceae (e.g., Hae-
mophilus), Staphylococcaceae and Streptococcaceae families, as well as
different potential pathogens belonging to the Proteobacteria and Fir-
micutes phyla, were related to a higher abundance of VFs (Fig. 2C).
Multivariate linear modeling identified associations between supple-
mentation status and global relative abundance of bacterial species.
Particularly, Haemophilus parainfluenzae, Escherichia coli and

Fig. 1. A) Average relative abundance of top 10 bacterial families identified within the EVC001-fed and control groups. B) Average relative abundance of virulence
factors in the entire metagenomes. (p < 0.0001, Mann–Whitney test).
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Streptococcus mitis were significantly higher in controls. Bifidobacterium
longum was significantly increased in the EVC001-supplemented group
(Fig. 2, D).

This is the first study using shotgun metagenomic sequencing to
report a direct effect of VF gene reduction in the infant gut bacterial
community in response to colonization by a probiotic organism.
Colonization of breastfed infants with B. infantis EVC001 may offer an
attractive approach to reduce the number of VFs and the relative
abundance of potential pathogenic gut bacteria that harbor them.
Future work will be needed to determine whether colonization by B.
infantis EVC001 relates to increased resilience in the face of pathogen
challenges.
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Fig. 2. A. Heatmap showing virulence factor (VF) abundance across samples in Reads Per Kilobase per Million mapped reads (RPKM). Samples were hierarchically
clustered based on similar VF profiles and colored by treatment, with the p-value bar highlighting only significant VFs (p < 0.05; Kruskal–Wallis with FDR
correction). B. Abundance among treatments (RPKM) of most significant VF (p < 0.05) mapped to 15 KEGG orthologs and 8 KEGG pathways. Higher frequencies are
associated with pathway completeness based on gene presence. C. Relative abundance of bacterial families identified across samples. “Others” refers to several
bacterial families for which individual relative abundance was lower than 1%. D. Differences in the gut microbiome composition at the species level between the
EVC001-fed and control groups. Bar plot of γ-coefficients from multivariate association with linear models (MaAsLin) statistical analysis assessing associations
between microbial species and supplementation status. Positive (teal bars) and negative (grey bar) coefficient values represent taxa enriched in the EVC001-fed group
and the control group, respectively. Q-values are FDR-adjusted p-values as computed by MaAsLin.
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